SIEVE ESTIMATION OF TIME-VARYING FACTOR LOADINGS

CHEUNG Ying Lun

December 28, 2017

Goethe University Frankfurt

· Standard factor model

$$X_{it} = \lambda'_i F_t + e_{it}$$

- · X_{it} : observed variables, $i = 1, \ldots, N$, $t = 1, \ldots, T$
- · Ft: common factors, K-dimensional
- · λ_i : factor loadings

· Time-varying factor model

$$X_{it} = \boldsymbol{\lambda}_{it}' \boldsymbol{F}_t + \boldsymbol{e}_{it}$$

- · X_{it} : observed variables, $i = 1, \ldots, N$, $t = 1, \ldots, T$
- · Ft: common factors, K-dimensional
- · λ_{it} : factor loadings

 $\cdot\,$ Standard factor model

$$X_{it} = \lambda'_i F_t + e_{it}$$

· Time-varying factor model

$$X_{it} = \lambda'_{it}F_t + e_{it}$$

· Standard factor model

$$X_{it} = \lambda'_i F_t + e_{it}$$

- NT data points
- \cdot NK + TK parameters
- · Time-varying factor model

$$X_{it} = \lambda'_{it}F_t + e_{it}$$

 $\cdot\,$ Standard factor model

$$X_{it} = \lambda'_i F_t + e_{it}$$

- NT data points
- · NK + TK parameters
- · Time-varying factor model

$$X_{it} = \lambda'_{it}F_t + e_{it}$$

- NT data points
- · NTK + TK parameters

- · Bates, Plagborg-Møller, Stock and Watson (2013):
 - \cdot Factor space can be consistently estimated by PCA if $oldsymbol{\lambda}_{it}$ are
 - $\cdot \,$ white noise sequences, or
 - · random walks, scaled by a factor of $h = o(T^{-1/2})$
 - · Estimation of λ_{it} not considered.

- · Bates, Plagborg-Møller, Stock and Watson (2013):
 - \cdot Factor space can be consistently estimated by PCA if $oldsymbol{\lambda}_{it}$ are
 - $\cdot \,$ white noise sequences, or
 - · random walks, scaled by a factor of $h = o(T^{-1/2})$
 - · Estimation of λ_{it} not considered.
- \cdot Su and Wang (2017):
 - · $\lambda_{it} = \lambda(t/T)$ are some smooth functions
 - · Estimate F_t and λ_{it} by a kernel-type local PCA
 - · Estimators consistent up to a rotation matrix $H^{(t)}$ for each t, i.e.,

$$\widehat{F}_t \stackrel{p}{\longrightarrow} H^{(t)'}F_t, \qquad \widehat{\lambda}_{it} \stackrel{p}{\longrightarrow} H^{(t)-1}\lambda_{it}.$$

1. Can we allow non-trivial variations in loadings and still estimate the factors *without rotation*?

- 1. Can we allow non-trivial variations in loadings and still estimate the factors *without rotation*?
- 2. Can we estimate the sample paths of all loadings?

- 1. Can we allow non-trivial variations in loadings and still estimate the factors *without rotation*?
- 2. Can we estimate the sample paths of all loadings?
- 3. Can we estimate them more efficiently if some of the loadings are constant?

- 1. Can we allow non-trivial variations in loadings and still estimate the factors *without rotation*?
- 2. Can we estimate the sample paths of all loadings?
- 3. Can we estimate them more efficiently if some of the loadings are constant?
- 4. Can we identify them if some of the loadings are constant?

Model and Assumptions

Estimation Procedure

Factors Estimation

Factors Identification

Loading Estimation

Partially Linear Models

Model Selection: Time-varying or Constant Loadings

Simulation Results

MODEL AND ASSUMPTIONS

$$X_{it} = \boldsymbol{\lambda}'_{it} \boldsymbol{F}_t + \boldsymbol{e}_{it}, \qquad i = 1, \dots, N; t = 1, \dots, T.$$

- $\{\mathbf{F}_t\}$ is weakly stationary
- $\cdot \{e_{it}\}$ has limited time and cross-sectional dependence

$$X_{it} = \boldsymbol{\lambda}'_{it} \boldsymbol{F}_t + \boldsymbol{e}_{it}, \qquad i = 1, \dots, N; t = 1, \dots, T.$$

- $\{\mathbf{F}_t\}$ is weakly stationary
- $\cdot \{e_{it}\}$ has limited time and cross-sectional dependence
- · $\boldsymbol{\lambda}_{it} := \boldsymbol{\lambda}_i(t/T)$ is α -Hölder continuous
 - $\cdot \,\, oldsymbol{\lambda}_i(\cdot)$ can be a smooth, differentiable function
 - $\cdot \, {oldsymbol \lambda}_i(\cdot)$ can be a fractional Brownian motion

ESTIMATION PROCEDURE

· Consider for some *t* close to *s*,

$$\begin{aligned} X_{it} &= \boldsymbol{\lambda}'_{it} \boldsymbol{F}_t + \boldsymbol{e}_{it} \\ &= \boldsymbol{\lambda}'_{is} \boldsymbol{F}_t + \boldsymbol{e}_{it} + (\boldsymbol{\lambda}_{it} - \boldsymbol{\lambda}_{is})' \boldsymbol{F}_t \\ &= \boldsymbol{\lambda}'_{is} \boldsymbol{F}_t + \boldsymbol{e}_{it} + \boldsymbol{w}_{ist} \end{aligned}$$

 \cdot Consider for some *t* close to *s*,

$$X_{it} = \boldsymbol{\lambda}'_{it} \boldsymbol{F}_t + \boldsymbol{e}_{it}$$

= $\boldsymbol{\lambda}'_{is} \boldsymbol{F}_t + \boldsymbol{e}_{it} + (\boldsymbol{\lambda}_{it} - \boldsymbol{\lambda}_{is})' \boldsymbol{F}_t$
= $\boldsymbol{\lambda}'_{is} \boldsymbol{F}_t + \boldsymbol{e}_{it} + \boldsymbol{w}_{ist}$

 $\cdot W_{ist} \xrightarrow{p} 0 \text{ as } (t-s)/T \rightarrow 0$

· Consider for some t close to s,

$$X_{it} = \lambda'_{it}F_t + e_{it}$$

= $\lambda'_{is}F_t + e_{it} + (\lambda_{it} - \lambda_{is})'F_t$
= $\lambda'_{is}F_t + e_{it} + w_{ist}$

$$\cdot W_{ist} \xrightarrow{p} 0 \text{ as } (t-s)/T \rightarrow 0$$

 \cdot For each $t \in \{s + 1, \dots, s + \tau\}$, if $\tau/T \to 0$,

$$X_{it} \approx \lambda'_{is} F_t + e_{it}.$$

- Set $\tau = T/n$, where $n^{-1} + nT^{-1} \rightarrow 0$
- Split the data into *n* equal parts, $T_r = \{(r-1)\tau + 1, \dots, r\tau\}$

• For each
$$r = 1, \ldots, n$$
, compute

$$\min_{\boldsymbol{\Lambda}^{(r)}, \boldsymbol{F}^{(r)}} \frac{1}{N\tau} \sum_{i=1}^{N} \sum_{t \in \mathcal{T}_r} \left(X_{it} - \boldsymbol{\lambda}_i^{(r)'} \boldsymbol{F}_t^{(r)} \right)^2$$

For each $t \in T_r$, r = 1, ..., n, and as $N, T, n \to \infty$, there exists a $K \times K$ matrix $\mathbf{H}^{(r)}$ with full rank such that

$$\widetilde{F}_{t}^{(r)} = H^{(r)'}F_{t} + O_{p}(N^{-1/2}) + O_{p}(\tau^{-1}) + O_{p}(n^{-\alpha})$$

For each $t \in T_r$, r = 1, ..., n, and as $N, T, n \to \infty$, there exists a $K \times K$ matrix $\mathbf{H}^{(r)}$ with full rank such that

$$\widetilde{F}_t^{(r)} = H^{(r)'}F_t + \underbrace{O_p(N^{-1/2}) + O_p(\tau^{-1})}_{P(r)} + O_p(n^{-\alpha})$$

estimation error

For each $t \in T_r$, r = 1, ..., n, and as $N, T, n \to \infty$, there exists a $K \times K$ matrix $\mathbf{H}^{(r)}$ with full rank such that

$$\widetilde{F}_t^{(r)} = H^{(r)'}F_t + \underbrace{O_p(N^{-1/2}) + O_p(\tau^{-1})}_{U_t \to U_t} + \underbrace{O_p(n^{-\alpha})}_{U_t \to U_t}$$

estimation error

approximation error Following Bai and Ng (2013), we consider the following identification restrictions for each r = 1, ..., n and for all t:

(PC1)
$$\tau^{-1} F^{(r)'} F^{(r)} = I$$
 and $\Lambda'_t \Lambda_t$ is a diagonal matrix with distinct entries, write $\widehat{F}^{(r)} = \widetilde{F}^{(r)}$;

(PC2) $T^{-1}F^{(r)'}F^{(r)} = I$ and $\Lambda_t = (\Lambda'_{1t}, \Lambda'_{2t})'$ where Λ_{1t} is a lower triangular matrix with non-zero elements on the diagonal, write $\widehat{F}^{(r)} = \widetilde{F}^{(r)}Q^{(r)}$ where $\widetilde{\Lambda}_r^{(r)'} = Q^{(r)}R^{(r)}$ is the QR decomposition;

(PC3)
$$\mathbf{\Lambda}_{t} = (I, \mathbf{\Lambda}_{2t}')'$$
, while $F^{(r)}$ is not restricted, write $\widehat{F}^{(r)} = \widetilde{F}^{(r)} \widetilde{\mathbf{\Lambda}}_{1}^{(r)'}$.

Under each of PC1-PC3, and for each t, we have

$$\widehat{F}_t = F_t + O_p(C_{N\tau}^{-1}) + O_p(n^{-\alpha})$$

where $C_{N\tau} = \min\{\sqrt{N}, \sqrt{\tau}\}.$

- 1. Can we allow non-trivial variations in loadings and still estimate the factors without rotation?
- 2. Can we estimate the sample paths of all loadings?
- 3. Can we estimate them more efficiently if some of the loadings are constant?
- 4. Can we identify them if some of the loadings are constant?

Approximate the time-varying loadings by a set of B-splines

 $oldsymbol{\lambda}_{it} pprox oldsymbol{C}_i oldsymbol{B}_t$

Approximate the time-varying loadings by a set of B-splines

 $\lambda_{it} \approx C_i B_t$

Then, we have

$$X_{it} \approx (C_i B_t)' F_t + e_{it}$$
$$= \sum_{k=1}^{K} \sum_{j=-\kappa+1}^{n-1} c_{ikj} B_{jt} F_{kt} + e_{it}$$
$$= c'_i \mathbb{F}_t + e_{it}$$

where $\mathbb{F}_t = \mathbf{F}_t \otimes \mathbf{B}_t$.

Approximate the time-varying loadings by a set of B-splines

$$\boldsymbol{\lambda}_{it} pprox \boldsymbol{C}_i \boldsymbol{B}_t$$

Then, we have

$$X_{it} \approx (C_i B_t)' \widehat{F}_t + e_{it}$$

= $\sum_{k=1}^{K} \sum_{j=-\kappa+1}^{n-1} c_{ikj} B_{jt} \widehat{F}_{kt} + e_{it}$
= $c'_i \widehat{\mathbb{F}}_t + e_{it}$

where $\widehat{\mathbb{F}}_t = \widehat{F}_t \otimes B_t$.

Consider the equidistant knot sequence $\mathbf{t} = (t_{-(d-1)}, \dots, t_{n+\kappa-1})$

$$0 = t_{-(d-1)} = \dots = t_0 < t_1 < \dots < t_{n-1} < t_n = \dots = t_{n+\kappa-1} = 1$$

where $t_j = j/T$ for j = 1, ..., n. We focus on the B-splines of order κ defined equipped with t, and define

$$B(t) = (B_{-\kappa+1}, \dots, B_{n-1})(t), \qquad B_t = B(t/T)$$

Estimating Factor Loadings

19

There exists a vector \mathbf{c}_{ik} such that for each i, k,

$$\max_{t} |\lambda_{ikt} - \mathbf{c}'_{ik}\mathbf{B}_{t}| = O(n^{-\alpha})$$

There exists a vector c_{ik} such that for each i, k,

$$\max_{t} |\lambda_{ikt} - \boldsymbol{c}'_{ik}\boldsymbol{B}_{t}| = O(n^{-\alpha})$$

There exists matrix C_i and vector $\|\boldsymbol{\nu}_{it}\| = O(n^{-\alpha})$ such that

$$X_{it} = \mathbf{c}'_{i} \mathbb{F}_{t} + e_{it} + \mathbf{\nu}'_{it} \mathbf{F}_{t}$$

There exists a vector c_{ik} such that for each i, k,

$$\max_{t} |\lambda_{ikt} - \boldsymbol{c}'_{ik}\boldsymbol{B}_{t}| = O(n^{-\alpha})$$

There exists matrix C_i and vector $\|\boldsymbol{\nu}_{it}\| = O(n^{-\alpha})$ such that

$$X_{it} = \mathbf{c}'_i \mathbb{F}_t + \mathbf{e}_{it} + \mathbf{\nu}'_{it} \mathbf{F}_t$$

Let $\widehat{\mathbb{F}}_t = \widehat{F}_t \otimes B_t$, we estimate

$$\widehat{\mathbf{c}}_i = \left(\widehat{\mathbb{F}}'\widehat{\mathbb{F}}\right)^{-1} \left(\widehat{\mathbb{F}}'\mathbf{X}_i\right), \qquad \widehat{\mathbf{\lambda}}_{it} = \widehat{\mathbf{C}}'_i\mathbf{B}_t$$

where $\widehat{\mathbf{c}}_i = \operatorname{vec}\left(\widehat{\mathbf{C}}_i\right)$.

Theorem

For each i,

$$T^{-1}\sum_{t=1}^{T}\left\|\widehat{\boldsymbol{\lambda}}_{it}-\boldsymbol{\lambda}_{it}\right\|^{2}=O_{p}(C_{N\tau}^{-2})+O_{p}(n^{-2\alpha})$$

Moreover,

$$\sup_{t} \left\| \widehat{\boldsymbol{\lambda}}_{it} - \boldsymbol{\lambda}_{it} \right\| = O_p(\sqrt{n}C_{N\tau}^{-1}) + O_p(n^{1/2-\alpha})$$

- 1. Can we allow non-trivial variations in loadings and still estimate the factors without rotation?
- 2. Can we estimate the sample paths of all loadings?
- 3. Can we estimate them more efficiently if some of the loadings are constant?
- 4. Can we identify them if some of the loadings are constant?

Consider the partially linear model,

$$X_{it} = \boldsymbol{\lambda}_{it}' \boldsymbol{F}_{1t} + \boldsymbol{\gamma}_i' \boldsymbol{F}_{2t} + \boldsymbol{e}_{it}$$

Consider the partially linear model,

$$X_{it} = \lambda'_{it}F_{1t} + \gamma'_iF_{2t} + e_{it}$$

 $pprox c'_i\widehat{\mathbb{F}}_{1t} + \gamma'_i\widehat{F}_{2t} + e_{it}$

Consider the partially linear model,

$$X_{it} = \boldsymbol{\lambda}'_{it} \boldsymbol{F}_{1t} + \boldsymbol{\gamma}'_{i} \boldsymbol{F}_{2t} + \boldsymbol{e}_{it}$$
$$\approx \boldsymbol{c}'_{i} \widehat{\mathbb{F}}_{1t} + \boldsymbol{\gamma}'_{i} \widehat{\boldsymbol{F}}_{2t} + \boldsymbol{e}_{it}$$

We compute

$$\begin{pmatrix} \widehat{\mathbf{c}}_i \\ \widehat{\boldsymbol{\gamma}}_i \end{pmatrix} = \left(\widehat{\mathbb{F}}'\widehat{\mathbb{F}}\right)^{-1} \left(\widehat{\mathbb{F}}'\mathbf{X}_i\right)$$

where $\widehat{\mathbb{F}} = (\widehat{\mathbb{F}}_1, \widehat{F}_2)$.

Theorem

For each i,

$$\|\widehat{\boldsymbol{\gamma}}_i - \boldsymbol{\gamma}_i\| = O_p(C_{N\tau}^{-1}) + O_p(n^{-\alpha})$$

- 1. Can we allow non-trivial variations in loadings and still estimate the factors without rotation?
- 2. Can we estimate the sample paths of all loadings?
- 3. Can we estimate them more efficiently if some of the loadings are constant?
- 4. Can we identify them if some of the loadings are constant?

For each cross-section unit *i* and for each factor *k*, we choose between

Model 1 $\lambda_{iks} \neq \lambda_{ikt}$ for some $s \neq t$

Model 2 $\lambda_{ikt} = \gamma_{ik}$ for all t

For each cross-section unit *i* and for each factor *k*, we choose between

Model 1 $\lambda_{iks} \neq \lambda_{ikt}$ for some $s \neq t$

Model 2 $\lambda_{ikt} = \gamma_{ik}$ for all t

We compare

$$TVC_{1ik} = T^{-1} \sum_{t=1}^{T} (X_{it} - \widehat{\lambda}'_{it}\widehat{F}_t)^2 + g(T)$$
$$TVC_{2ik} = T^{-1} \sum_{t=1}^{T} (X_{it} - \widehat{\lambda}'_{-k,it}\widehat{F}_{-k,t} - \widehat{\gamma}_{ik}\widehat{F}_{kt})^2$$

Theorem

Let $g(T) \rightarrow 0$ and $(n^{\alpha} + C_{N\tau})g(T) \rightarrow \infty$, then $P(TVC_{1ik} < TVC_{2ik}) \rightarrow 1$ under **Model 1** (time-varying loadings), and $P(TVC_{1ik} > TVC_{2ik}) \rightarrow 1$ under **Model 2** (constant loadings).

SIMULATION RESULTS

Denote $\mathfrak{B}_{H}(\cdot)$ as the fractional Brownian motion with Hurst index H,

$$\begin{split} X_{it} &= \lambda_{it} F_{1t} + \gamma_i F_{2t} + e_{it}, \qquad e_{it} \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1) \\ F_{kt} &= \phi F_{k,t-1} + \varepsilon_{kt}, \qquad \varepsilon_{kt} \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1) \\ \lambda_{it} &\sim \mathfrak{B}_{H_i}(t/T) \end{split}$$

	N = 100			N = 500	
Т	Н	$R_{\widehat{F}}^2$	Т	Н	$R_{\widehat{F}}^2$
400	0.3	0.956	400	0.3	0.957
400	0.5	0.965	400	0.5	0.972
400	0.8	0.966	400	0.8	0.972
1000	0.3	0.955	1000	0.3	0.982
1000	0.5	0.959	1000	0.5	0.984
1000	0.8	0.959	1000	0.8	0.984
2000	0.3	0.967	2000	0.3	0.988
2000	0.5	0.971	2000	0.5	0.989
2000	0.8	0.971	2000	0.8	0.988

N = 100			N = 500				
Т	Н	$MSE(\lambda_{it})$	$MSE(\gamma_i)$	Т	Н	$MSE(\lambda_{it})$	$MSE(\gamma_i)$
400	0.3	0.688	0.008	400	0.3	0.690	0.011
400	0.5	0.239	0.005	400	0.5	0.231	0.005
400	0.8	0.099	0.005	400	0.8	0.096	0.004
1000	0.3	0.614	0.003	1000	0.3	0.611	0.003
1000	0.5	0.180	0.002	1000	0.5	0.175	0.002
1000	0.8	0.053	0.002	1000	0.8	0.049	0.002
2000	0.3	0.489	0.002	2000	0.3	0.514	0.001
2000	0.5	0.126	0.001	2000	0.5	0.131	0.001
2000	0.8	0.033	0.001	2000	0.8	0.034	0.001

ESTIMATION RESULTS: FACTOR LOADINGS

ESTIMATION RESULTS: FACTOR LOADINGS

ESTIMATION RESULTS: FACTOR LOADINGS

N = 100			N = 500				
Т	Н	$P(M_1 M_1)$	$P(M_2 M_2)$	Т	Н	$P(M_1 M_1)$	$P(M_2 M_2)$
400	0.3	1.000	0.955	400	0.3	1.000	0.937
400	0.5	1.000	0.956	400	0.5	1.000	0.943
400	0.8	0.992	0.946	400	0.8	0.993	0.948
1000	0.3	1.000	0.970	1000	0.3	1.000	0.986
1000	0.5	1.000	0.981	1000	0.5	1.000	0.989
1000	0.8	1.000	0.984	1000	0.8	0.997	0.985
2000	0.3	1.000	0.996	2000	0.3	1.000	0.996
2000	0.5	1.000	0.998	2000	0.5	1.000	0.997
2000	0.8	0.999	0.998	2000	0.8	0.996	0.995

M₁ stands for varying loadings; M₂ stands for constant loadings.

- 1. Can we allow non-trivial variations in loadings and still estimate the factors without rotation?
- 2. Can we estimate the sample paths of all loadings?
- 3. Can we estimate them more efficiently if some of the loadings are constant?
- 4. Can we identify them if some of the loadings are constant?

Thanks!